Contents

Booklet 0.1 Authors

Foreword

Updates

Contents

Practice Paper Analysis

Ways to Use This Book

GDC Skills

More Recommendations

Booklet 0.2	Formula List
Booklet 1.1	Set 1 Paper 1
Booklet 1.2	Set 1 Paper 2
Booklet 2.1	Set 2 Paper 1
Booklet 2.2	Set 2 Paper 2
Booklet 3.1	Set 3 Paper 1
Booklet 3.2	Set 3 Paper 2
Booklet 4.1	Set 4 Paper 1
Booklet 4.2	Set 4 Paper 2

The solution page of this book


https://www.seprodstore.com/ibaislpapermaterial

OR

Distributions of Ossations		Set 1		Set 2		Set 3		Set 4	
DIS	Distributions of Questions		P2	P1	P2	P1	P2	P1	P2
	Standard Form			2				1	
	Approximation and Error	1		4		1		3	
4	Systems of Equations	4		7		7		4	
1	Arithmetic Sequences	2				3			
	Geometric Sequences	7		5		5		8	
	Financial Mathematics	11		10		13		12	
	Functions	5		3		12		6	
2	Quadratic Functions	14		12		8		13	
	Exp. and Log. Functions	12		8			4	10	
	Coordinate Geometry		1		2	2			1
	Voronoi Diagrams	10		9		11		9	
3	Trigonometry			6					
3	2-D Trigonometry	9			4	9			4
	Areas and Volumes		4				2	2	
	Statistics	3		1		4		5	
	Probability								
	Discrete Distributions					6			
4	Binomial Distribution	8		11				11	
	Normal Distribution		2	14		14			2
	Bivariate Analysis		3		1		1		5
	Statistical Tests	6			3		3	7	
5	Differentiation		5		5	10		14	
ပ	Integration & Trap. Rule	13		13			5		3

Formula List of Applications and Interpretation Standard Level for IBDP Mathematics

Analysis & Approaches
Standard Level

Analysis & Approaches Higher Level

Applications & Interpretation Standard Level

Applications & Interpretation Higher Level

20

Binomial Distribution

- ✓ Properties of a random variable $X \sim B(n, p)$ following binomial distribution:
 - 1. Only two outcomes from every independent trial (Success and failure)
 - 2. n: Number of trials
 - 3. p: Probability of success
 - 4. X: Number of successes in n trials
- ✓ Formulae for binomial distribution:

1.
$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r} \text{ for } 0 \le r \le n, \ r \in \mathbb{Z}$$

- 2. E(X) = np: Expected value of X
- 3. $\operatorname{Var}(X) = np(1-p)$: Variance of X
- 4. $\sqrt{np(1-p)}$: Standard deviation of X
- 5. $P(X \le r) = P(X < r+1) = 1 P(X \ge r+1)$

21

Normal Distribution

- ✓ Properties of a random variable $X \sim N(\mu, \sigma^2)$ following normal distribution:
 - 1. μ : Mean
 - 2. σ : Standard deviation
 - 3. The mean, the median and the mode are the same
 - 4. The normal curve representing the distribution is a bell-shaped curve which is symmetric about the middle vertical line
 - 5. $P(X < \mu) = P(X > \mu) = 0.5$
 - 6. The total area under the curve is 1

Applications and Interpretation Standard Level for IBDP Mathematics Practice Paper Set 2 – Paper 1 (90 Minutes)

Question – Answer Book

Instructions

- Attempt ALL questions. Write your answers in the spaces provided in this Question - Answer Book.
- **2.** A graphic display calculator is needed.
- 3. You are suggested to prepare a formula booklet of Applications and Interpretation for IBDP Mathematics when attempting the questions.
- **4.** Supplementary answer sheets and graph papers will be supplied on request.
- Unless otherwise specified, ALL working must be clearly shown.
- 6. Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
- 7. The diagrams in this paper are **NOT** necessarily drawn to scale.
- **8.** Information to be read before you start the exam:

	Marker's	Examiner's				
	Use Only	Use Only				
Question Number	Marks	Marks	Maximum Mark			
1			6			
2			4			
3			5			
4			5			
5			6			
6			6			
7			6			
8			6			
9			5			
10			6			
11			7			
12			6			
13			6			
14			6			
Overall						
Paper 1			80			
Total			00			

5. The table shows the first four terms of three sequences x_n , y_n and z_n .

n	1	2	3	4
\mathcal{X}_n	100	300	500	700
\mathcal{Y}_n	100	300	400	450
Z_n	100	300	900	2700

- (a) State which sequence is
 - (i) arithmetic;
 - (ii) geometric.
- (b) Find the 10th term of the arithmetic sequence.
- (c) Find the sum of the first 10 terms of the geometric sequence.

[2]

[2]

[2]

-	e function $N(t) = 16500(1.07)^t$, where t is the number of months after ary, 2019.	· 1			
(a)	Write down the number of followers of the account on 1 January, 20				
(b)	Find the number of followers of the account on 1 June, 2020, giving answer correct to the nearest integer.	[1] g the			
(c)	Find the year when the number of followers first reaches 500000.	[2]			
		[3]			

8.

 f passes through the point P(2,600). (a) Find an expression for f(x). [5] The point Q is a point on the positive x-axis with x-coordinate q. The area of the triangle OPQ is 1500, where O is the origin. (b) Write down the value of q. [1] 	13.	The derivative of f is given by $f'(x) = \frac{1000}{x^2} + 500x$, where $x \neq 0$. The graph of						
[5] The point Q is a point on the positive <i>x</i> -axis with <i>x</i> -coordinate <i>q</i> . The area of the triangle OPQ is 1500, where O is the origin. (b) Write down the value of <i>q</i> .		f passes through the point $P(2,600)$.						
The point Q is a point on the positive x -axis with x -coordinate q . The area of the triangle OPQ is 1500 , where O is the origin. (b) Write down the value of q .		(a) Find an expression for $f(x)$.	[5]					
		The point Q is a point on the positive x -axis with x -coordinate q . The area						
		(b) Write down the value of q .	[1]					
	-							

AI SL Practice Set 2 Paper 1 Solution

1. (a) (i) 40 A1 N1

(ii) 1 A1 N1

(iii) 0 A1 N1

[3]

(b) The mean number of watermelons $= \frac{(0)(12) + (1)(10) + (2)(6) + (3)(5) + (4)(5) + (5)(2)}{(41) \text{ for}}$

 $= \frac{(0)(12) + (1)(10) + (2)(6) + (3)(3) + (4)(3) + (3)(2)}{12 + 10 + 6 + 5 + 5 + 2}$ (A1) for correct formula

=1.675 A1 N2

(c) Discrete A1 N1

[1]

2. (a) The required perimeter

=120+350+370 (M1) for valid approach

= 840 cm= $8.4 \times 10^2 \text{ cm}$ A1 N2

[2]

(b) The required area

 $=\frac{(120)(350)}{2}$ (M1) for valid approach

 $= 21000 \,\mathrm{cm}^2$

 $= 2.1 \times 10^4 \text{ cm}^2$ A1 N2

[2]

[2]